Improvements on GFlowNets Applied to Molecular Discovery
Offered By: Valence Labs via YouTube
Course Description
Overview
Explore recent advancements in GFlowNets for molecular discovery in this 56-minute conference talk by Emmanuel Bengio from Valence Labs. Delve into multi-objective optimization using goal-based strategies and improved training techniques for both de-novo discovery and lead optimization. Gain insights into GFlowNets' potential for scientific discovery and active learning. The talk covers training and parameterizing GFlowNets, multi-objective approaches, limitations of scalarization, goal-conditioned GFlowNets, evaluation metrics, learned focus models, and understanding GFlowNet training through minimal graph problems. Conclude with key takeaways and a Q&A session to deepen your understanding of this cutting-edge approach to molecular design.
Syllabus
- Intro
- Training & Parameterizing a GFlowNet
- Multi-Objective GFlowNets
- Limitations of Scalarisation
- Goal Conditioned GFlowNets
- Evaluation Metrics
- A Learned Focus Model & Results
- Towards Understanding & Improving GFlowNet Training
- Understanding GFlowNets on a Minimal Graph Problem
- Conclusions & Takeaways
- Q+A
Taught by
Valence Labs
Related Courses
Drug DiscoveryUniversity of California, San Diego via Coursera 新药发现和药物靶点 | Drug Discovery and its Target
Peking University via edX Principles and Applications of NMR Spectroscopy
Indian Institute of Science Bangalore via Swayam Cell Culture Technologies
Indian Institute of Technology Kanpur via Swayam Medicinal Chemistry
Indian Institute of Technology Madras via Swayam