Imagination-Augmented Agents for Deep Reinforcement Learning
Offered By: Yannic Kilcher via YouTube
Course Description
Overview
Explore a detailed commentary on the research paper "Imagination-Augmented Agents for Deep Reinforcement Learning" in this 15-minute video. Dive into the novel architecture that combines model-free and model-based aspects of deep reinforcement learning. Discover how Imagination-Augmented Agents (I2As) learn to interpret predictions from a learned environment model to construct implicit plans. Understand the advantages of I2As, including improved data efficiency, performance, and robustness to model misspecification compared to existing baselines. Gain insights into the work of researchers from various institutions who contributed to this innovative approach in reinforcement learning.
Syllabus
Imagination-Augmented Agents for Deep Reinforcement Learning
Taught by
Yannic Kilcher
Related Courses
6.S094: Deep Learning for Self-Driving CarsMassachusetts Institute of Technology via Independent Natural Language Processing (NLP)
Microsoft via edX Deep Reinforcement Learning
Nvidia Deep Learning Institute via Udacity Advanced AI: Deep Reinforcement Learning in Python
Udemy Self-driving go-kart with Unity-ML
Udemy