YoVDO

Image GPT- Generative Pretraining from Pixels - Paper Explained

Offered By: Yannic Kilcher via YouTube

Tags

Generative Art Courses Artificial Intelligence Courses Image Processing Courses Generative Models Courses

Course Description

Overview

Explore a comprehensive video analysis of the paper "Generative Pretraining from Pixels" by OpenAI researchers. Delve into the application of generative model principles from natural language processing to image processing. Learn about the innovative approach of using a sequence Transformer to predict pixels auto-regressively, without relying on 2D input structure knowledge. Discover how this method, trained on low-resolution ImageNet data without labels, achieves remarkable results in image representation learning. Examine the model's performance in linear probing, fine-tuning, and low-data classification tasks, including its competitive accuracy on CIFAR-10 and ImageNet benchmarks. Follow the detailed breakdown of the model architecture, experimental results, and their implications for the field of computer vision and unsupervised learning.

Syllabus

- Intro & Overview
- Generative Models for Pretraining
- Pretraining for Visual Tasks
- Model Architecture
- Linear Probe Experiments
- Fine-Tuning Experiments
- Conclusion & Comments


Taught by

Yannic Kilcher

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Computational Photography
Georgia Institute of Technology via Coursera
Digital Signal Processing
École Polytechnique Fédérale de Lausanne via Coursera
Creative, Serious and Playful Science of Android Apps
University of Illinois at Urbana-Champaign via Coursera