YoVDO

A Classification Theorem for Compact Cauchy Horizons in Vacuum Spacetimes

Offered By: BIMSA via YouTube

Tags

General Relativity Courses Topology Courses Differential Geometry Courses Ergodic Theory Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a comprehensive classification theorem for the topology of compact, non-degenerate Cauchy horizons in time-orientable, smooth, vacuum 3+1-spacetimes in this 40-minute conference talk. Begin with a review of previous relevant results before delving into the main theorem. Learn about the four possible configurations for horizon generators: (i) all closed, (ii) two closed with others densely filling a two-torus, (iii) all densely filling a two-torus, or (iv) all densely filling the horizon. Discover how these configurations correspond to specific horizon manifold types: (i') Seifert manifold, (ii') lens space, (iii') two-torus bundle over a circle, or (iv') three-torus. Gain insight into the resolution of a problem posed by Isenberg and Moncrief for ergodic horizons, with the conclusion that in the three-torus case, the spacetime is the flat Kasner space.

Syllabus

Ignacio Bustamante Bianchi: A classification theorem for compact Cauchy horizons... #ICBS2024


Taught by

BIMSA

Related Courses

Measure Theory - IMSc
IMSC via Swayam
Chance and Chaos - How to Predict the Unpredictable by Jens Marklof
International Centre for Theoretical Sciences via YouTube
Commensurators of Thin Subgroups
International Centre for Theoretical Sciences via YouTube
Lyapunov Exponents, From the 1960's to the 2020's by Marcelo Viana
International Centre for Theoretical Sciences via YouTube
Noncommutative Ergodic Theory of Higher Rank Lattices
International Mathematical Union via YouTube