Identifying Representations for Intervention Extrapolation
Offered By: Valence Labs via YouTube
Course Description
Overview
Explore a 33-minute conference talk on identifying representations for intervention extrapolation presented by Sorawit (James) Saengkyongam from Valence Labs. Delve into the concept of identifiable and causal representation learning for improving generalizability and robustness in machine learning. Examine the task of intervention extrapolation, which involves predicting the effects of unseen interventions on outcomes. Learn about the setup involving outcome Y, observed features X, latent features Z, and exogenous action variables A. Discover how identifiable representations can provide effective solutions for non-linear intervention effects. Understand the Rep4Ex approach, which combines intervention extrapolation with identifiable representation learning. Explore the theoretical findings on identifiability and the proposed method for enforcing linear invariance constraints. Follow along as the speaker validates the theoretical findings through synthetic experiments and demonstrates the success of the approach in predicting unseen intervention effects. Engage with the Q&A session to gain further insights into this cutting-edge research in causal representation learning.
Syllabus
- Introduction
- Intervention Extrapolation with Observed Z
- Intervention Extrapolation via Identifiable Representations
- Identification of the Unmixing Function
- Simulations
- Q+A
Taught by
Valence Labs
Related Courses
Deep Learning For Visual ComputingIndian Institute of Technology, Kharagpur via Swayam Deep Learning with Tensorflow
IBM via edX Deep Learning - IITKGP
Indian Institute of Technology, Kharagpur via Swayam Deep Learning
Indian Institute of Technology, Kharagpur via Swayam Deep Learning
Amazon via Udacity