Identification of Potential Lyme Disease Cases Using Self-Reported Worldwide Tweets
Offered By: Fields Institute via YouTube
Course Description
Overview
Learn about innovative research using social media data to identify potential Lyme disease cases in this 44-minute seminar presented by Elda Laison from the University of Montreal. Explore how self-reported tweets from around the world are being analyzed to detect and track Lyme disease occurrences as part of the Next Generation Seminar Series hosted by the Fields Institute. Gain insights into the intersection of public health, data science, and social media analytics in this cutting-edge approach to disease surveillance and epidemiology.
Syllabus
Identification of potential Lyme disease cases using self-reported worldwide tweets
Taught by
Fields Institute
Related Courses
Introduction to Data ScienceUniversity of Washington via Coursera Big Data Analytics in Healthcare
Georgia Institute of Technology via Udacity More Data Mining with Weka
University of Waikato via Independent Mining Massive Datasets
Stanford University via edX Pattern Discovery in Data Mining
University of Illinois at Urbana-Champaign via Coursera