The KSBA Moduli Space of Log Calabi-Yau Surfaces - Part 1
Offered By: IMSA via YouTube
Course Description
Overview
Explore a 58-minute lecture on the KSBA moduli space of log Calabi-Yau surfaces, delivered by Hülya Argüz from the University of Georgia at the University of Miami. Delve into the natural generalization of the moduli space of stable curves to higher dimensions, introduced by Kollár-Shepherd-Barron and Alexeev. Examine the parametrization of stable pairs (X,B) and their specific conditions. Investigate concrete descriptions of this moduli space in select situations, including toric varieties. Learn about the open question regarding log Calabi-Yau varieties and the conjecture by Hacking-Keel-Yu. Discover the proof of this conjecture for all log Calabi-Yau surfaces, presented as joint work with Alexeev and Bousseau. Gain insights into the tools used in this proof, including the minimal model program, log smooth deformation theory, and mirror symmetry.
Syllabus
Hülya Argüz, University of Georgia: The KSBA moduli space of log Calabi--Yau surfaces I
Taught by
IMSA
Related Courses
One-Dimensional Objects - Algebraic TopologyInsights into Mathematics via YouTube Distinguishing Monotone Lagrangians via Holomorphic Annuli - Ailsa Keating
Institute for Advanced Study via YouTube Pseudoholomorphic Curves with Boundary - Can You Count Them? Can You Really? - Sara Tukachinsky
Institute for Advanced Study via YouTube Mixing Surfaces, Algebra, and Geometry
Joint Mathematics Meetings via YouTube Representations of Fuchsian Groups, Parahoric Group Schemes by Vikraman Balaji
International Centre for Theoretical Sciences via YouTube