Optimizing Spark SQL Jobs with Parallel and Asynchronous IO
Offered By: Databricks via YouTube
Course Description
Overview
Discover optimization techniques for Spark SQL jobs in this 21-minute Databricks conference talk. Learn how to improve performance in large-scale big data clusters using parallel and asynchronous I/O operations. Explore file-level and row group-level parallel read implementations, asynchronous spill optimization, and the innovative parquet column family design. Gain insights into how these techniques can accelerate Apache Spark jobs, potentially improving end-to-end performance by 5% to 30%. Delve into the implementation details of these features and understand their impact on job acceleration in EB-level data platforms.
Syllabus
Introduction
Why Does IO Matter
Parquet
Spiral Circles
Sequential vs Parallel IO
Group Level Parallel IO
Column Family Parallel IO
Asynchronous Sphere
Taught by
Databricks
Related Courses
Coding the Matrix: Linear Algebra through Computer Science ApplicationsBrown University via Coursera كيف تفكر الآلات - مقدمة في تقنيات الحوسبة
King Fahd University of Petroleum and Minerals via Rwaq (رواق) Datascience et Analyse situationnelle : dans les coulisses du Big Data
IONIS via IONIS Data Lakes for Big Data
EdCast 統計学Ⅰ:データ分析の基礎 (ga014)
University of Tokyo via gacco