How to Select the Correct QML Loss Function and Optimizer
Offered By: ChemicalQDevice via YouTube
Course Description
Overview
Explore the intricacies of selecting appropriate loss functions and optimizers for quantum machine learning (QML) in this comprehensive presentation. Delve into the fundamentals of parameter optimization, understanding how loss functions evaluate model performance and the importance of minimizing cost functions to find optimal parameter values. Examine popular QML libraries, including Qiskit, PyTorch, TensorFlow, and PennyLane, to gain insights into their specific loss functions and optimizers. Learn how the choice of optimizer impacts convergence speed and effectiveness in QML applications. Discover practical strategies for selecting the most suitable loss functions and optimizers to enhance your QML models' performance and efficiency.
Syllabus
How to Select the Correct QML Loss Function and Optimizer
Taught by
ChemicalQDevice
Related Courses
Deep Learning with Python and PyTorch.IBM via edX Introduction to Machine Learning
Duke University via Coursera How Google does Machine Learning em Português Brasileiro
Google Cloud via Coursera Intro to Deep Learning with PyTorch
Facebook via Udacity Secure and Private AI
Facebook via Udacity