Improving Data and Modeling for Computer Vision Applications
Offered By: Snorkel AI via YouTube
Course Description
Overview
Explore the latest advancements in computer vision for data-centric image classification model development in this 28-minute conference talk by ML Research Scientist Ravi Teja Mullapudi from Snorkel AI. Discover how visual prompts and fast parameter-efficient models built on foundation models provide immediate feedback for rapid iteration on data quality and model performance, leading to significant time-savings and improvements. Learn about adapting model representations through large-scale fine-tuning on weakly labeled data to address limitations of fast but small models trained on fixed features. Gain insights into scaling and model adaptations necessary for transitioning from image-level classification to object-level detection and segmentation. Understand how computer vision data and models can be effectively improved in tandem and adjusted for downstream applications, providing valuable knowledge for enhancing data and modeling techniques in computer vision applications.
Syllabus
How to Improve Data and Modeling for Computer Vision Apps
Taught by
Snorkel AI
Related Courses
Clasificación de imágenes: ¿cómo reconocer el contenido de una imagen?Universitat Autònoma de Barcelona (Autonomous University of Barcelona) via Coursera Core ML: Machine Learning for iOS
Udacity Fundamentals of Deep Learning for Computer Vision
Nvidia via Independent Computer Vision and Image Analysis
Microsoft via edX Using GPUs to Scale and Speed-up Deep Learning
IBM via edX