YoVDO

How to Design and Build Resilient Machine Learning Systems

Offered By: MLOps World: Machine Learning in Production via YouTube

Tags

MLOps Courses Machine Learning Courses Fault Tolerance Courses Risk Mitigation Courses Feature Engineering Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore strategies for designing and building resilient machine learning systems in this 30-minute conference talk from MLOps World: Machine Learning in Production. Learn from Dan Shiebler, Head of Machine Learning at Abnormal Security, as he delves into the challenges of real-world ML implementation. Discover how to handle system failures, pipeline breakdowns, service outages, and unexpected user behavior. Understand the importance of graceful degradation and smooth failure handling in effective systems. Examine why ML models trained on clean data often struggle in production environments and how to address feature distribution shifts. Gain insights into detecting, mitigating, and overcoming production-specific risks, illustrated with examples from Abnormal Security's experience. Equip yourself with the knowledge to create ML systems that can withstand the complexities and uncertainties of real-world applications.

Syllabus

How to Design and Build Resilient Machine Learning Systems


Taught by

MLOps World: Machine Learning in Production

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent