Building Machine Learning Solutions with Python - Code Walkthrough
Offered By: Shaw Talebi via YouTube
Course Description
Overview
Explore the intricacies of building machine learning solutions with Python in this 45-minute video tutorial. Delve into the critical role of experimentation in the ML lifecycle and follow along with a practical code walkthrough for developing a semantic search tool for YouTube videos. Learn about the unique challenges of ML compared to traditional software development, understand design choices for semantic search, and gain hands-on experience with experimentation, evaluation, video indexing, and UI construction. Discover valuable resources and references to deepen your understanding of full-stack data science, RAG, and text embeddings. Perfect for aspiring data scientists and ML practitioners looking to enhance their skills in building real-world ML applications.
Syllabus
Introduction -
Why ML is Different -
Role of Experimentation -
Semantic Search Design Choices -
Example Code: Semantic Search of YT Videos -
Preview of Final Product -
Step 1: Experimentation & Evaluation -
Step 2: Build Video Index -
Step 3: Build UI -
What's Next? -
Taught by
Shaw Talebi
Related Courses
U&P AI - Natural Language Processing (NLP) with PythonUdemy What's New in Cognitive Search and Cool Frameworks with PyTorch - Episode 5
Microsoft via YouTube Stress Testing Qdrant - Semantic Search with 90,000 Vectors - Lightning Fast Search Microservice
David Shapiro ~ AI via YouTube Semantic Search for AI - Testing Out Qdrant Neural Search
David Shapiro ~ AI via YouTube Spotify's Podcast Search Explained
James Briggs via YouTube