Fourier Analysis of Equivariant Quantum Cohomology - Lecture 3
Offered By: IMSA via YouTube
Course Description
Overview
Explore advanced concepts in algebraic geometry and quantum cohomology through this 58-minute lecture by Hiroshi Iritani from Kyoto University. Delve into a D-module version of Teleman's conjecture, examining the relationship between equivariant quantum cohomology of Hamiltonian T-spaces and quantum cohomology of symplectic reductions. Discover the emerging "global Kaehler moduli space" picture and investigate how Fourier spectral analysis leads to formal decompositions of quantum cohomology D-modules for projective bundles and blowups. Gain insights into cutting-edge research at the intersection of algebraic geometry, symplectic geometry, and mathematical physics.
Syllabus
Hiroshi Iritani, Kyoto University: Fourier analysis of equivariant quantum cohomology III
Taught by
IMSA
Related Courses
Introduction to Algebraic Geometry and Commutative AlgebraIndian Institute of Science Bangalore via Swayam Introduction to Algebraic Geometry and Commutative Algebra
NPTEL via YouTube Basic Algebraic Geometry - Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity
NPTEL via YouTube Basic Algebraic Geometry
NIOS via YouTube Affine and Projective Geometry, and the Problem of Lines
Insights into Mathematics via YouTube