Hindsight Learning for MDPs with Exogenous Inputs
Offered By: GERAD Research Center via YouTube
Course Description
Overview
Explore a 51-minute DS4DM Coffee Talk on Hindsight Learning for Markov Decision Processes (MDPs) with Exogenous Inputs, presented by Sean Sinclair from MIT. Dive into the world of sequential decision-making under uncertainty, focusing on resource management problems where exogenous variables outside the decision-maker's control affect outcomes. Learn about Exo-MDPs and the innovative class of data-efficient algorithms called Hindsight Learning (HL). Discover how HL algorithms achieve efficiency by leveraging past decisions to infer counterfactual consequences, accelerating policy improvements. Compare HL against classic baselines in multi-secretary and airline revenue management problems. Examine the scalability of these algorithms in a critical cloud resource management scenario: allocating Virtual Machines (VMs) to physical machines, with simulations using real datasets from a major public cloud provider. Gain insights into how HL algorithms outperform domain-specific heuristics and state-of-the-art reinforcement learning methods in various applications.
Syllabus
Hindsight Learning for MDPs with Exogenous Inputs, Sean Sinclair
Taught by
GERAD Research Center
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Decision-Making for Autonomous Systems
Chalmers University of Technology via edX Fundamentals of Reinforcement Learning
University of Alberta via Coursera A Complete Reinforcement Learning System (Capstone)
University of Alberta via Coursera An Introduction to Artificial Intelligence
Indian Institute of Technology Delhi via Swayam