Hierarchically Branched Diffusion Models for Efficient and Interpretable Multi-Class Conditional Generation
Offered By: Generative Memory Lab via YouTube
Course Description
Overview
Explore a groundbreaking approach to multi-class conditional generation through Alex M. Tseng's presentation on hierarchically branched diffusion models. Delve into the innovative paper that introduces a more efficient and interpretable method for generating diverse content across multiple classes. Learn how this novel technique enhances the capabilities of diffusion models, offering potential advancements in various fields of artificial intelligence and machine learning.
Syllabus
Hierarchically branched diffusion models
Taught by
Generative Memory Lab
Related Courses
Diffusion Models Beat GANs on Image Synthesis - Machine Learning Research Paper ExplainedYannic Kilcher via YouTube Diffusion Models Beat GANs on Image Synthesis - ML Coding Series - Part 2
Aleksa Gordić - The AI Epiphany via YouTube OpenAI GLIDE - Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
Aleksa Gordić - The AI Epiphany via YouTube Food for Diffusion
HuggingFace via YouTube Imagen: Text-to-Image Generation Using Diffusion Models - Lecture 9
University of Central Florida via YouTube