YoVDO

Hiding Objects from Computer Vision by Exploiting Correlation Biases

Offered By: Black Hat via YouTube

Tags

Black Hat Courses Computer Vision Courses Object Detection Courses

Course Description

Overview

Explore a groundbreaking study on exploiting correlation biases in major computer vision systems to craft adversarial images. Learn how objects commonly found together in nature create strong correlations that lead to detection biases in AI models. Discover examples like how round shapes near dogs are often misclassified as frisbees, while weakly correlated objects like stop signs and pizza become harder to detect together. Examine the researchers' methods for generating adversarial images using popular object detection models like RetinaNet, YOLOv3, and TinyYOLOv3 trained on the COCO dataset. Gain insights into the implications of these biases for computer vision applications and potential mitigation strategies in this 27-minute Black Hat conference talk by Masaki Kamizono, Yin Minn Pa Pa, and Paul Ziegler.

Syllabus

Hiding Objects from Computer Vision by Exploiting Correlation Biases


Taught by

Black Hat

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Computational Photography
Georgia Institute of Technology via Coursera
Einführung in Computer Vision
Technische Universität München (Technical University of Munich) via Coursera
Introduction to Computer Vision
Georgia Institute of Technology via Udacity