Hengrui Luo - Generalized Penalty for Circular Coordinate Representation
Offered By: Applied Algebraic Topology Network via YouTube
Course Description
Overview
Explore a 21-minute conference talk on adapting circular coordinate representation for high-dimensional datasets using generalized penalty functions in Topological Data Analysis. Delve into dimension reduction techniques, topological concepts, and the application of persistent cohomology for data visualization on a torus. Learn how this approach accommodates sparsity while preserving topological structures, supported by simulation experiments and real data analysis. Examine the two-loop example revisited and a high-dimensional example, based on joint research with Alice Pantania, Jisu Kim, and Mikael Vejdemo-Johansson.
Syllabus
Intro
Dimension reduction - a linear approach
Dimension reduction - a non-linear approach
Topological Concepts
Circular coordinates
Generalized Penalty Functions
Two-loop example revisited
A high-dimensional example IV
Taught by
Applied Algebraic Topology Network
Related Courses
Intro to StatisticsStanford University via Udacity Introduction to Data Science
University of Washington via Coursera Passion Driven Statistics
Wesleyan University via Coursera Information Visualization
Indiana University via Independent DCO042 - Python For Informatics
University of Michigan via Independent