Random Partitions, Hurwitz Numbers and Counting High Genus Surfaces
Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube
Course Description
Overview
Explore a 47-minute conference talk presented by Harriet Walsh from the Université d'Angers at IPAM's Integrability and Algebraic Combinatorics Workshop. Delve into the fascinating world of random partitions, Hurwitz numbers, and high genus surface counting. Discover how Frobenius' formula allows for the interpretation of unconnected Hurwitz numbers as normalization factors for probability laws on integer partitions, known as Plancherel-Hurwitz measures. Examine the asymptotic behavior of random partitions under these measures in a regime where normalization factors count unconnected surfaces of high genus. Gain insights into estimating high genus unconnected Hurwitz numbers and consider questions about random unconnected surfaces and bijective interpretations of Frobenius' formula. Based on joint work with Guillaume Chapuy and Baptiste Louf, this talk offers a probabilistic approach to understanding complex mathematical concepts in combinatorics and surface topology.
Syllabus
Harriet Walsh - Random partitions, Hurwitz number and counting high genus surfaces - IPAM at UCLA
Taught by
Institute for Pure & Applied Mathematics (IPAM)
Related Courses
Analytic Combinatorics, Part IPrinceton University via Coursera Analytic Combinatorics, Part II
Princeton University via Coursera Analytic Combinatorics
Princeton University via Coursera Principles of Computing (Part 1)
Rice University via Coursera Combinatorics and Probability
Moscow Institute of Physics and Technology via Coursera