YoVDO

Develop Test Suites for Machine Learning Models and Data with Deepchecks

Offered By: Prodramp via YouTube

Tags

Machine Learning Courses Python Courses Data Validation Courses

Course Description

Overview

Develop test suites for machine learning models and data using Deepchecks in this hands-on lab. Explore the Python library's extensive test suites, learn to compose checks with customizable conditions, and generate HTML reports for easy result interpretation. Master data validation tests, distribution analysis, and model validation techniques. Create custom tests tailored to specific needs, and integrate Deepchecks into ML pipelines for comprehensive model and data quality assurance. Apply these skills to Random Forest and Gradient Boosting Classifier models, gaining practical experience in enhancing the reliability and performance of machine learning projects.

Syllabus

- Video start
- Lab Intro
- When to use Deepchecks
- Getting started
- Test Suite Functions
- Integration in ML Pipeline
- Data Validation Tests
- Individual test setup
- Test result HTML
- Data Distribution Tests
- Data Distribution Tests 2
- Writing custom tests
- Model analysis and validation tests
- Random Forest classifier model tests
- Gradient Boosting Classifier model tests
- Code push to GitHub
- Lab Recap
- Credits


Taught by

Prodramp

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent