YoVDO

Hamilton-Jacobi Theory - Finding the Best Canonical Transformation + Examples

Offered By: Ross Dynamics Lab via YouTube

Tags

Aerospace Engineering Courses Dynamical Systems Courses Nonlinear Dynamics Courses

Course Description

Overview

Explore Hamilton-Jacobi theory and its application in finding optimal canonical transformations to solve Hamilton's equations. Delve into the Hamilton-Jacobi equation, a partial differential equation for Hamilton's principal function S, and understand its geometric interpretation. Learn about common simplifications for time-independent Hamiltonians and the relationship between S and the action integral. Apply these concepts to practical examples, including the simple harmonic oscillator and Kepler's two-body problem. Gain insights into solving complex dynamical systems and enhancing your understanding of advanced Hamiltonian mechanics.

Syllabus

Hamilton-Jacobi theory introduction .
Every point in phase space is an equilibrium point.
Derivation of Hamilton-Jacobi equation.
Example: Hamilton-Jacobi for simple harmonic oscillator.
Simplification: if Hamiltonian is time-independent.
Hamilton's Principal function S is the action integral.
Example: Hamilton-Jacobi for Kepler problem.
Simplification: if Hamiltonian is separable.


Taught by

Ross Dynamics Lab

Related Courses

Introduction to Aerodynamics
Massachusetts Institute of Technology via edX
Introduction to Aeronautical Engineering
Delft University of Technology via edX
Hypersonics – from Shock Waves to Scramjets
University of Queensland via edX
Composite Materials Overview for Engineers
University of Washington via edX
Caer o No caer. El Secreto de las Estructuras.
Universidad Carlos iii de Madrid via edX