YoVDO

Graphical Models for Financial Time Series and Portfolio Optimization

Offered By: Toronto Machine Learning Series (TMLS) via YouTube

Tags

Machine Learning Courses Asset Management Courses Autoencoders Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore graphical models for constructing optimal portfolios in this 41-minute conference talk from the Toronto Machine Learning Series. Delve into various techniques including PCA-KMeans, autoencoders, dynamic clustering, and structural learning to capture time-varying patterns in covariance matrices. Compare the performance of portfolios generated using these graphical strategies against baseline methods and the S&P 500 index. Discover how these models consistently produced steadily increasing returns with low risk, often outperforming the market benchmark. Gain insights into the effectiveness of graphical models in learning temporal dependencies in time series data and their practical applications in asset management. Learn from Jenny Ni Zhan, a PhD student at Carnegie Mellon University, as she presents her research on leveraging machine learning techniques for financial portfolio optimization.

Syllabus

Graphical Models for Financial Time Series and Portfolio


Taught by

Toronto Machine Learning Series (TMLS)

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent