Reliable AI: Successes, Challenges, and Limitations
Offered By: Erwin Schrödinger International Institute for Mathematics and Physics (ESI) via YouTube
Course Description
Overview
Explore the mathematical perspective on the reliability challenges in artificial intelligence through this 52-minute lecture by Gitta Kutyniok at the Erwin Schrödinger International Institute for Mathematics and Physics. Gain insights into the current wave of AI and its unprecedented impact on industry, public life, and sciences. Understand the importance of reliability in AI, highlighted by political regularization efforts like the EU AI Act and G7 Hiroshima AI Process. Delve into recent advances in generalization guarantees and explainability, with applications in imaging problems and learning physical laws. Examine fundamental limitations in AI reliability and discover surprising connections to emerging computing paradigms such as neuromorphic and quantum computing.
Syllabus
Gitta Kutyniok - Reliable AI: Successes, Challenges, and Limitations
Taught by
Erwin Schrödinger International Institute for Mathematics and Physics (ESI)
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Artificial Intelligence for Robotics
Stanford University via Udacity Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent