YoVDO

Generalization in Diffusion Models from Geometry-Adaptive Harmonic Representation

Offered By: Valence Labs via YouTube

Tags

Diffusion Models Courses Machine Learning Courses Neural Networks Courses Image Processing Courses Inductive Bias Courses Generalization Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the intricacies of generalization in diffusion models through a comprehensive lecture on geometry-adaptive harmonic representation. Delve into the world of AI for drug discovery as Zahra Kadkhodaie from Valence Labs presents a detailed analysis of how deep neural networks (DNNs) learn high-dimensional densities despite the curse of dimensionality. Examine the strong generalization capabilities of denoising DNNs and their alignment with data distribution properties. Investigate the shrinkage operation performed by denoisers in an image-adapted basis, revealing oscillating harmonic structures along contours and in homogeneous regions. Discover how trained denoisers are inductively biased towards geometry-adaptive harmonic representations, even when trained on suboptimal image classes. Gain insights into the near-optimal denoising performance of networks trained on regular image classes. The lecture covers various topics, including diffusion models, denoising, the transition from memorization to generalization, denoising as shrinkage in a basis, and inductive biases, concluding with a Q&A session.

Syllabus

- Intro + Background
- Diffusion Models + Denoising
- Transition from Memorization to Generalization
- Denoising as Shrinkage in a Basis
- Inductive Biases
- Q + A


Taught by

Valence Labs

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Computational Photography
Georgia Institute of Technology via Coursera
Digital Signal Processing
École Polytechnique Fédérale de Lausanne via Coursera
Creative, Serious and Playful Science of Android Apps
University of Illinois at Urbana-Champaign via Coursera