Generalization Bounds for Neural Network Based Decoders
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore a 36-minute lecture on generalization bounds for neural network-based decoders, presented by Ravi Tandon from the University of Arizona. Delve into information-theoretic methods for trustworthy machine learning, focusing on the application of neural networks in decoding processes and their performance limitations. Gain insights into the theoretical foundations and practical implications of generalization bounds in the context of neural network decoders, enhancing your understanding of advanced machine learning concepts and their intersection with information theory.
Syllabus
Generalization bounds for Neural Network Based Decoders
Taught by
Simons Institute
Related Courses
4.0 Shades of Digitalisation for the Chemical and Process IndustriesUniversity of Padova via FutureLearn A Day in the Life of a Data Engineer
Amazon Web Services via AWS Skill Builder FinTech for Finance and Business Leaders
ACCA via edX Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera Accounting Data Analytics
Coursera