Gaussian Differential Privacy
Offered By: BIMSA via YouTube
Course Description
Overview
Explore the concept of Gaussian Differential Privacy in this 43-minute lecture by 苏炜杰 at BIMSA for #ICBS2024. Delve into the proposed relaxation of differential privacy called "f-DP," which addresses composition issues and offers improved privacy analysis. Learn about the canonical single-parameter family within f-DP known as "Gaussian Differential Privacy" and its significance in privacy-preserving data analysis. Discover the central limit theorem that establishes Gaussian differential privacy as a focal point for hypothesis-testing based privacy definitions under composition. Examine the Edgeworth Accountant, an analytical approach for composing f-DP guarantees of private algorithms. Gain insights into the practical applications of these concepts through an improved analysis of privacy guarantees in noisy stochastic gradient descent.
Syllabus
苏炜杰: Gaussian Differential Privacy #ICBS2024
Taught by
BIMSA
Related Courses
Statistics OnePrinceton University via Coursera Intro to Statistics
Stanford University via Udacity Passion Driven Statistics
Wesleyan University via Coursera Statistics
San Jose State University via Udacity Introduction to Statistics: Inference
University of California, Berkeley via edX