YoVDO

Game Theoretic Learning and Spectrum Management - Part 2

Offered By: IEEE Signal Processing Society via YouTube

Tags

Game Theory Courses Machine Learning Courses Reinforcement Learning Courses Signal Processing Courses Algorithms Courses Stochastic Processes Courses Multi-Armed Bandits Courses

Course Description

Overview

Dive into the second part of a three-part lecture series on game theoretic learning and spectrum management presented by Amir Leshem and Kobi Cohen for the IEEE Signal Processing Society. Explore key concepts such as single-player multi-arm bandit problems, stochastic map formulation, and sublinear regret. Examine various algorithms including UCB1, epsilon-greedy, and adaptive sequential algorithms. Investigate Markovian rewards, restless MAPs, and regret minimization techniques. Learn about exploration and exploitation network structures, reinforcement learning, and deep reinforcement learning applications. Gain insights into single-agent learning and exploration phases through simulations and practical examples in this comprehensive one-hour lecture.

Syllabus

Game Theoretic Learning
Single Player Multiarm Bandit
Motivation to Multiarm
stochastic map formulation
sublinear regret
ucb1
epsilon and greedy
markovian reward
restless map
goal notation
regret minimization
Adaptive Sequential Algorithms
Exploration Network Structure
Exploitation Networks
Simulations
Reinforcement Learning
Deep Reinforcement Learning
The Problem
The Algorithm
Single Agent Learning
Exploration Phase A


Taught by

IEEE Signal Processing Society

Related Courses

Game Theory
Stanford University via Coursera
Model Thinking
University of Michigan via Coursera
Online Games: Literature, New Media, and Narrative
Vanderbilt University via Coursera
Games without Chance: Combinatorial Game Theory
Georgia Institute of Technology via Coursera
Competitive Strategy
Ludwig-Maximilians-Universität München via Coursera