Blaschke–Santaló Inequalities for Minkowski and Asplund Endomorphisms
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore a 43-minute lecture on advanced topics in convex geometric analysis, focusing on the Blaschke–Santaló inequality and its extensions. Delve into new isoperimetric inequalities for monotone Minkowski endomorphisms of convex bodies, examining their relationship to the classical Euclidean Urysohn inequality. Investigate the unique position of the Blaschke–Santaló inequality as the strongest and only affine invariant inequality within this family. Discover the limitations of extending these inequalities to weakly monotone Minkowski endomorphisms and the unexpected implications of this finding. Learn about a new set of analytic inequalities for Asplund endomorphisms of log-concave functions, which generalize the functional Blaschke–Santaló inequality. Gain insights into cutting-edge research in geometric analysis through this collaborative work presented by Franz Schuster at the Hausdorff Center for Mathematics.
Syllabus
Franz Schuster: Blaschke–Santaló Inequalities for Minkowski and Asplund Endomorphisms
Taught by
Hausdorff Center for Mathematics
Related Courses
Ehud Friedgut- KKL’s Influence on MeInternational Mathematical Union via YouTube Metric Currents, Isoperimetric Inequalities, and Compactness
ICTP Mathematics via YouTube Isoperimetric Inequality for Hausdorff Contents and Its Applications
Applied Algebraic Topology Network via YouTube Yevgeny Liokumovich - Urysohn Width, Isoperimetric Inequalities and Scalar Curvature
Applied Algebraic Topology Network via YouTube Variational Proofs of Isoperimetric Inequalities
Institute for Pure & Applied Mathematics (IPAM) via YouTube