YoVDO

Fourier Neural Operator for Parametric Partial Differential Equations - Paper Explained

Offered By: Yannic Kilcher via YouTube

Tags

Differential Equations Courses Neural Networks Courses Partial Differential Equations Courses

Course Description

Overview

Explore an in-depth explanation of the Fourier Neural Operator for Parametric Partial Differential Equations in this comprehensive video. Delve into the innovative approach that revolutionizes the solution of PDEs by learning mappings between function spaces. Understand the Navier-Stokes problem statement, formal problem definition, and the concept of neural operators. Discover how the Fourier Neural Operator parameterizes the integral kernel in Fourier space, resulting in an expressive and efficient architecture. Examine experimental examples, including Burgers' equation, Darcy flow, and the Navier-Stokes equation in the turbulent regime. Follow along with a code walkthrough and gain insights into the state-of-the-art performance of this method compared to traditional PDE solvers and existing neural network methodologies.

Syllabus

- Intro & Overview
- Navier Stokes Problem Statement
- Formal Problem Definition
- Neural Operator
- Fourier Neural Operator
- Experimental Examples
- Code Walkthrough
- Summary & Conclusion


Taught by

Yannic Kilcher

Related Courses

Differential Equations in Action
Udacity
Dynamical Modeling Methods for Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera
An Introduction to Functional Analysis
École Centrale Paris via Coursera
Practical Numerical Methods with Python
George Washington University via Independent
The Finite Element Method for Problems in Physics
University of Michigan via Coursera