Forward and Inverse Approximation Theory for Linear Temporal Convolutional Networks
Offered By: Conference GSI via YouTube
Course Description
Overview
Explore the intricacies of forward and inverse approximation theory as applied to Linear Temporal Convolutional Networks in this illuminating 22-minute conference talk from GSI. Delve into the mathematical foundations and practical implications of these advanced concepts, gaining valuable insights into their role in enhancing the performance and understanding of temporal convolutional architectures. Discover how these theoretical frameworks contribute to the development and optimization of neural networks designed for processing sequential data.
Syllabus
Forward and Inverse Approximation Theory for Linear Temporal Convolutional Networks
Taught by
Conference GSI
Related Courses
Sparse Representations in Signal and Image Processing: FundamentalsTechnion - Israel Institute of Technology via edX Filters and Other Potions for Early Vision and Recognition
MITCBMM via YouTube ADSI Summer Workshop- Algorithmic Foundations of Learning and Control, Pablo Parrilo
Paul G. Allen School via YouTube A Function Space View of Overparameterized Neural Networks - Rebecca Willet, University of Chicago
Alan Turing Institute via YouTube Approximation with Deep Networks - Remi Gribonval, Inria
Alan Turing Institute via YouTube