Fluid Mechanics - Concept and Derivation
Offered By: Cal Poly Pomona via YouTube
Course Description
Overview
Syllabus
Fluid Mechanics: Topic 1.1 - Definition of a fluid.
Fluid Mechanics: Topic 1.2 - Pressure.
Fluid Mechanics: Topic 1.3 - Absolute pressure and gage pressure.
Fluid Mechanics: Topic 1.4 - Density.
Fluid Mechanics: Topic 1.5 - Viscosity.
Fluid Mechanics: Topic 1.6 - Continuum approximation.
Fluid Mechanics: Topic 1.7 - Vapor pressure.
Fluid Mechanics: Topic 2.1 - Pascal's Law.
Fluid Mechanics: Topic 2.2 - Hydrostatic pressure gradient.
Fluid Mechanics: Topic 2.3 - Hydrostatic pressure distribution.
Fluid Mechanics: Topic 3.1 - Introduction to manometers.
Fluid Mechanics: Topic 3.2 - Barometers.
Fluid Mechanics: Topic 3.3 - Piezometer tube manometers.
Fluid Mechanics: Topic 3.4 - U-tube manometers.
Fluid Mechanics: Topic 3.5 - Inclined tube manometers.
Fluid Mechanics: Topic 4.1 - Hydrostatic force on a plane surface.
Fluid Mechanics: Topic 4.2 - Center of pressure on a plane surface.
Fluid Mechanics: Topic 4.3 - Hydrostatic force on a curved surface.
Fluid Mechanics: Topic 5 - Buoyancy & Archimedes' principle.
Fluid Mechanics: Topic 6.1 - Systems vs Control Volumes.
Fluid Mechanics: Topic 6.2 - Reynolds transport theorem.
Fluid Mechanics: Topic 7.1 - Conservation of mass for a control volume.
Fluid Mechanics: Topic 7.2 - Conservation of linear momentum for a control volume.
Fluid Mechanics: Topic 7.2.1 - Analyzing pressure forces on a CV.
Fluid Mechanics: Topic 7.3 - Conservation of energy for a control volume.
Fluid Mechanics: Topic 7.3.1 - Energy grade line (EGL) & Hydraulic grade line (HGL).
Fluid Mechanics: Topic 7.3.2 - The Bernoulli equation.
Fluid Mechanics: Topic 7.3.3 - Definition of pump efficiency & turbine efficiency.
Fluid Mechanics: Topic 8.1 - General Characteristics of laminar and turbulent flows in pipes.
Fluid Mechanics: Topic 8.2 - Developing and fully-developed flow in pipes.
Fluid Mechanics: Topic 8.3 - Pressure drop and head loss in pipe flow.
Fluid Mechanics: Topic 8.4 - Velocity profile of fully-developed laminar flow in pipes.
Fluid Mechanics: Topic 8.5 - Velocity profile for fully-developed turbulent flow in pipes.
Fluid Mechanics: Topic 8.6.1 - Major losses in circular pipe systems.
Fluid Mechanics: Topic 8.6.2 - The Moody chart.
Fluid Mechanics: Topic 8.6.3 - Major losses in non-circular ducts.
Fluid Mechanics: Topic 8.7 - Minor losses in pipe systems.
Fluid Mechanics: Topic 9.1 - Categories of pipe flow problems.
Fluid Mechanics: Topic 9.2 - Example of type I pipe flow problem.
Fluid Mechanics: Topic 10.1 - Lagrangian vs Eulerian descriptions of flow.
Fluid Mechanics: Topic 10.2 - The material derivative.
Fluid Mechanics: Topic 10.3 - Steamlines, streaklines, and pathlines.
Fluid Mechanics: Topic 10.4 - Kinematics of fluid elements (translation and linear deformation).
Fluid Mechanics: Topic 10.5 - Kinematics of fluid elements (shear strain, rotation, and vorticity).
Fluid Mechanics: Topic 11.1 - The continuity equation.
Taught by
CPPMechEngTutorials
Tags
Related Courses
Flight Vehicle AerodynamicsMassachusetts Institute of Technology via edX Classical Mechanics
Massachusetts Institute of Technology via edX Mécanique des Fluides
École Polytechnique Fédérale de Lausanne via edX الميكانيكا الهندسية (ديناميكا الجسيم)
Rwaq (رواق) Foundation of Computational Fluid Dynamics
Indian Institute of Technology Madras via Swayam