YoVDO

Extending Scikit-Learn with Your Own Regressor

Offered By: EuroPython Conference via YouTube

Tags

EuroPython Courses Machine Learning Courses Linear Regression Courses scikit-learn Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Learn how to extend Scikit-Learn by creating your own robust linear estimator in this EuroPython 2014 conference talk. Explore the design and inner workings of Scikit-Learn, then follow a practical demonstration of implementing the Theil-Sen estimator, known for its resilience to outliers. Compare the advantages of this estimator to the ordinary least squares method, and gain insights into the requirements and process of contributing to Scikit-Learn. Discover the steps to write a custom regressor that adheres to Scikit-Learn's interfaces, and benefit from the speaker's firsthand experience with submitting a pull request to the project.

Syllabus

Intro
blue yonder
What is Scikit-Learn?
Scikit-Learn's basic areas of application
Least Squares/Linear Regression
Problems with Outliers
How Theil Sen avoids Outliers
Thell-Sen vs. Least Squares
Writing an own Estimator Regressor
Requirements of a Contribution to Scikit-Learn
Experiences of my first Scikit-Learn PR


Taught by

EuroPython Conference

Related Courses

Введение в машинное обучение
Higher School of Economics via Coursera
Using Python for Research
Harvard University via edX
Multiple Linear Regression with scikit-learn
Coursera Project Network via Coursera
Predict Sales Revenue with scikit-learn
Coursera Project Network via Coursera
Introducción a la Inteligencia Artificial: Principales Algoritmos
Galileo University via edX