Flexible Neural Networks and the Frontiers of Meta-Learning
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore the cutting-edge concepts of flexible neural networks and meta-learning in this 50-minute lecture by Chelsea Finn from Stanford University. Delve into the challenges of enabling agents to learn skills in the real world, focusing on few-shot image classification as a key example. Examine the meta-learning problem from both mechanistic and probabilistic perspectives, and understand how supervised learning relates to few-shot learning. Discover optimization-based inference techniques and learn how to leverage data from previous objects for quick adaptation to new ones. Gain insights into the practical implementation of FTML (Few-Shot Task-Agnostic Meta-Learning) and analyze experimental results in this thought-provoking talk from the Simons Institute's "Emerging Challenges in Deep Learning" series.
Syllabus
Intro
How can we enable agents to learn skills in the real world?
Example: Few-Shot Image Classification
The Meta-Learning Problem: The Mechanistic View
The Meta-Learning Problem: The Probabilistic View Supervised Learning
Few-Shot Learning
Optimization-Based Inference
Leverage data with previous objects to quickly adapt to new ones?
Practical instantiation of FTML
Experiments
Taught by
Simons Institute
Related Courses
Advanced Machine LearningThe Open University via FutureLearn Advanced Machine Learning and Signal Processing
IBM via Coursera An Introduction to Machine Learning in Quantitative Finance
University College London via FutureLearn Applied Data Science for Data Analysts
Databricks via Coursera Applied Machine Learning
Johns Hopkins University via Coursera