YoVDO

Flexible Neural Networks and the Frontiers of Meta-Learning

Offered By: Simons Institute via YouTube

Tags

Meta-Learning Courses Deep Learning Courses Supervised Learning Courses Few-shot Learning Courses

Course Description

Overview

Explore the cutting-edge concepts of flexible neural networks and meta-learning in this 50-minute lecture by Chelsea Finn from Stanford University. Delve into the challenges of enabling agents to learn skills in the real world, focusing on few-shot image classification as a key example. Examine the meta-learning problem from both mechanistic and probabilistic perspectives, and understand how supervised learning relates to few-shot learning. Discover optimization-based inference techniques and learn how to leverage data from previous objects for quick adaptation to new ones. Gain insights into the practical implementation of FTML (Few-Shot Task-Agnostic Meta-Learning) and analyze experimental results in this thought-provoking talk from the Simons Institute's "Emerging Challenges in Deep Learning" series.

Syllabus

Intro
How can we enable agents to learn skills in the real world?
Example: Few-Shot Image Classification
The Meta-Learning Problem: The Mechanistic View
The Meta-Learning Problem: The Probabilistic View Supervised Learning
Few-Shot Learning
Optimization-Based Inference
Leverage data with previous objects to quickly adapt to new ones?
Practical instantiation of FTML
Experiments


Taught by

Simons Institute

Related Courses

Advanced Machine Learning
The Open University via FutureLearn
Advanced Machine Learning and Signal Processing
IBM via Coursera
An Introduction to Machine Learning in Quantitative Finance
University College London via FutureLearn
Applied Data Science for Data Analysts
Databricks via Coursera
Applied Machine Learning
Johns Hopkins University via Coursera