Fine-Tuning Llama 3 on a Custom Dataset for RAG Q&A - Training LLM on a Single GPU
Offered By: Venelin Valkov via YouTube
Course Description
Overview
Learn how to fine-tune Llama 3 on a custom dataset for a RAG Q&A use case using a single GPU in this comprehensive 33-minute tutorial. Explore the benefits of fine-tuning, understand the process overview, and dive into practical steps including dataset preparation, model loading, custom dataset creation, and LoRA setup. Follow along with Google Colab setup, establish a baseline, train the model, and evaluate its performance against the base model. Gain insights into pushing the fine-tuned model to the HuggingFace hub and discover how even smaller models can outperform larger ones when properly fine-tuned for specific tasks.
Syllabus
- Why fine-tuning?
- Text tutorial on MLExpert.io
- Fine-tuning process overview
- Dataset
- Lllama 3 8B Instruct
- Google Colab Setup
- Loading model and tokenizer
- Create custom dataset
- Establish baseline
- Training on completions
- LoRA setup
- Training
- Load model and push to HuggingFace hub
- Evaluation comparing vs the base model
- Conclusion
Taught by
Venelin Valkov
Related Courses
Моделирование биологических молекул на GPU (Biomolecular modeling on GPU)Moscow Institute of Physics and Technology via Coursera Practical Deep Learning For Coders
fast.ai via Independent GPU Architectures And Programming
Indian Institute of Technology, Kharagpur via Swayam Perform Real-Time Object Detection with YOLOv3
Coursera Project Network via Coursera Getting Started with PyTorch
Coursera Project Network via Coursera