Recommendation Independence
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore a conference talk on recommendation independence presented at FAT* 2018 by Toshihiro Kamishima and colleagues. Delve into the concept of fair treatment of content providers in recommendation systems. Learn about the regularization approach and model-based methods for achieving recommendation independence. Examine experimental results and comparisons with other approaches. Gain insights into the history and development of this field, as well as its implications for service pricing. Engage with the presented material through a question and answer session at the end of the talk.
Syllabus
Introduction
Overview
Cooperative Feeling
Recommendation Independence
Fair Treatment of Content Providers
Regularization Approach
History
Modelbased approach
Experimental results
Comparison
Service Price
Question
Taught by
ACM FAccT Conference
Related Courses
Mining Massive DatasetsStanford University via edX Nearest Neighbor Collaborative Filtering
University of Minnesota via Coursera Practical Deep Learning For Coders
fast.ai via Independent Data Mining: Theories and Algorithms for Tackling Big Data | 数据挖掘:理论与算法
Tsinghua University via edX ความรู้พื้นฐานเกี่ยวกับบิ๊กดาตา | Big Data Concept
Sukhothai Thammathirat Open University via ThaiMOOC