Interpretable Active Learning
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore an insightful conference talk on interpretable active learning presented by Richard Phillips at FAT* 2018. Delve into the innovative approach that combines active learning with LIME (Local Interpretable Model-agnostic Explanations) to enhance model interpretability. Discover how this method can improve the efficiency and transparency of machine learning models. Learn about the formula behind this technique and its potential applications in various fields. Gain valuable insights from the presentation's conclusion and engage with the thought-provoking questions raised during the discussion.
Syllabus
Introduction
Title
Lime
Formula
Conclusion
Questions
Taught by
ACM FAccT Conference
Related Courses
Translation Tutorial - Thinking Through and Writing About Research Ethics Beyond "Broader Impact"Association for Computing Machinery (ACM) via YouTube Translation Tutorial - Data Externalities
Association for Computing Machinery (ACM) via YouTube Translation Tutorial - Causal Fairness Analysis
Association for Computing Machinery (ACM) via YouTube Implications Tutorial - Using Harms and Benefits to Ground Practical AI Fairness Assessments
Association for Computing Machinery (ACM) via YouTube Responsible AI in Industry - Lessons Learned in Practice
Association for Computing Machinery (ACM) via YouTube