Auditing Black-box Models
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore a hands-on tutorial from the FAT* 2018 conference that delves into auditing black-box models. Learn techniques to interpret complex machine learning models with multiple inputs and parameters. Discover how to identify potential indirect dependencies on protected attributes and assess the importance of various input factors. Follow along with the presenters as they guide you through a series of simple examples using a Jupyter notebook and their custom software library. Gain insights into the current capabilities and limitations of this auditing method, and understand how to apply it to your own datasets. This 57-minute session, led by experts from the University of Arizona, University of Utah, and Haverford College, equips you with practical skills to enhance model transparency and fairness in your machine learning projects.
Syllabus
FAT* 2018 Hands-on Tutorial: Auditing Black-box Models
Taught by
ACM FAccT Conference
Related Courses
Translation Tutorial - Thinking Through and Writing About Research Ethics Beyond "Broader Impact"Association for Computing Machinery (ACM) via YouTube Translation Tutorial - Data Externalities
Association for Computing Machinery (ACM) via YouTube Translation Tutorial - Causal Fairness Analysis
Association for Computing Machinery (ACM) via YouTube Implications Tutorial - Using Harms and Benefits to Ground Practical AI Fairness Assessments
Association for Computing Machinery (ACM) via YouTube Responsible AI in Industry - Lessons Learned in Practice
Association for Computing Machinery (ACM) via YouTube