The Complex Evolution of Comet Nuclei - Evidence from Deep Impact and Stardust-NExT
Offered By: AGU via YouTube
Course Description
Overview
Explore the complex evolution of comet nuclei through evidence from the Deep Impact and Stardust-NExT missions in this 55-minute AGU Fall Meeting 2011 Whipple Lecture. Delve into Fred Whipple's 1950 "dirty snowballs" theory and its evolution following ESA's Giotto mission to Comet Halley in 1986. Examine the geologically complex nucleus of Comet Tempel 1, including its smooth flow characteristics, mechanism, and the formation of thicker layers. Investigate the comet's uniformly black appearance, significant erosion, and pitted terrain. Gain insights into the conclusions drawn from these observations and discuss the future prospects of comet sample return missions. This lecture, presented by Joseph Veverka from Cornell University, offers a comprehensive overview of our current understanding of comet nuclei and their complex evolutionary processes.
Syllabus
The Complex Evolution of Comet Nuclei: Evidence from Deep Impact and Stardust-NEXT
Fred Whipple (1950) argued comet nuclei must be "dirty snowballs"
Comet Halley: ESA's Giotto 1986
Comet Nuclei: Halley Era Ideas
Tempel 1: A Geologically Complex Nucleus
Successful Encounter! Feb. 14, 2011
Smooth Flow Characteristics
Smooth Flow Mechanism
Thicker Layers: How Are They Made?
Tempel 1: Uniformly Black
Significant Erosion
Pitted Terrain
Conclusions
The Future: Sample Return
Taught by
AGU
Related Courses
ExplorUnivers: à la découverte de l'universUniversité de Nantes via France Université Numerique Where Did Earth's Water Come From? - Origins and Evolution of Earth's Hydrosphere
History of the Earth via YouTube 'Oumuamua: A Mysterious Interstellar Interloper
Hubble Space Telescope via YouTube Astronomy - The Solar System
Michel van Biezen via YouTube James Webb Space Telescope - Comets, Planets, and the Origin of Life
World Science Festival via YouTube