YoVDO

Fairness Through Robustness - Investigating Robustness Disparity in Deep Learning

Offered By: Association for Computing Machinery (ACM) via YouTube

Tags

ACM FAccT Conference Courses Data Analysis Courses Research Methodology Courses Fairness in AI Courses

Course Description

Overview

Explore a 21-minute conference talk that delves into the intersection of fairness and robustness in deep learning systems. Investigate how robustness disparity affects different demographic groups and its implications for algorithmic fairness. Learn about data preliminaries, metrics, and key research questions addressed in this study. Examine the results obtained from experiments on various datasets, including the intriguing "Aliens" data. Discover potential mitigation strategies to address robustness disparities and enhance fairness in machine learning models. Gain insights into the critical relationship between robustness and fairness in AI systems, presented by researchers V. Nanda, S. Dooley, S. Singla, S. Feizi, and J. Dickerson at the FAccT 2021 virtual conference.

Syllabus

Introduction
Data Preliminaries
Metrics
Research Questions
Results
Aliens Data
Mitigation


Taught by

ACM FAccT Conference

Related Courses

Artificial Intelligence Ethics in Action
LearnQuest via Coursera
Human Factors in AI
Duke University via Coursera
Identify principles and practices for responsible AI
Microsoft via Microsoft Learn
Debiasing AI Using Amazon SageMaker
LinkedIn Learning
Tech On the Go: Ethics in AI
LinkedIn Learning