YoVDO

Fairness in Machine Learning with Tulsee Doshi

Offered By: Association for Computing Machinery (ACM) via YouTube

Tags

Machine Learning Courses Data Science Courses Fairness Courses Algorithmic Bias Courses

Course Description

Overview

Explore the critical considerations of fairness in machine learning development through this insightful ACM talk by Tulsee Doshi, Product Lead for Google's Machine Learning Fairness Effort. Delve into lessons learned from Google's products and research, and discover approaches for evaluating and mitigating common fairness concerns in AI. Learn about the importance of explainability in addressing fairness issues and gain knowledge of available tools and techniques. Examine topics such as AI principles, ML examples and concerns, gender shades, counterfactual fairness, equality of opportunity, and improvements in mitigations. Understand the significance of transparency, industry-wide conversations, and Google's responsibility in promoting fairness in machine learning.

Syllabus

Introduction
ACM
Housekeeping
Overview
What is fairness
AI principles
ML example
ML concerns
Gender shades
Counterfactual Fairness
Equality of Opportunity
Improvements Mitigations
Recap
Transparency
Tools
Google Responsibility
Industrywide conversation
Questions and answers
Replicating the model
Bias in algorithms
ML fairness in sensor data
symmetric vs asymmetric data sets
subgroup analysis and fairness
closing remarks


Taught by

Association for Computing Machinery (ACM)

Related Courses

Data Science Ethics
University of Michigan via edX
Advanced Generative Art and Computational Creativity
Simon Fraser University via Kadenze
AI for Legal Professionals (I): Law and Policy
National Chiao Tung University via FutureLearn
Ethical Issues in Data Science
University of Colorado Boulder via Coursera
Artificial Intelligence by CrashCourse
CrashCourse via YouTube