FADE - FAir Double Ensemble Learning for Observable and Counterfactual Outcomes
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore a 15-minute conference talk presented at an Association for Computing Machinery (ACM) event that delves into FADE, a novel approach to fair double ensemble learning for observable and counterfactual outcomes. Learn about the innovative techniques developed by researchers Alan Mishler and Edward H. Kennedy to address fairness concerns in machine learning models, particularly in scenarios involving both observable and counterfactual outcomes. Gain insights into how FADE can potentially improve decision-making processes in various fields where fairness and equity are crucial considerations.
Syllabus
FADE: FAir Double Ensemble Learning for Observable and Counterfactual Outcomes
Taught by
ACM FAccT Conference
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent