F-BLEAU - Fast Black-Box Leakage Estimation
Offered By: IEEE via YouTube
Course Description
Overview
Explore a cutting-edge approach to measuring information leakage in black-box systems through this IEEE Symposium on Security & Privacy presentation. Dive into F-BLEAU (Fast Black-box Leakage Estimation), a novel method that leverages machine learning techniques to estimate Bayes risk and derive popular leakage measures. Learn how this approach overcomes limitations of traditional frequentist methods, particularly for systems with large or continuous output spaces. Discover the power of universally consistent learning rules, focusing on nearest neighbor rules, in improving estimation accuracy while reducing the number of required black-box queries. Examine the method's applicability through both synthetic and real-world data experiments, and compare its performance against the state-of-the-art tool leakiEst.
Syllabus
Introduction
Base risk
Nearest Neighbor
Results
Experiments
Taught by
IEEE Symposium on Security and Privacy
Tags
Related Courses
Computer SecurityStanford University via Coursera Cryptography II
Stanford University via Coursera Malicious Software and its Underground Economy: Two Sides to Every Story
University of London International Programmes via Coursera Building an Information Risk Management Toolkit
University of Washington via Coursera Introduction to Cybersecurity
National Cybersecurity Institute at Excelsior College via Canvas Network