Expander Graph Application 2: Derandomization - Lecture 16c of CS Theory Toolkit
Offered By: Ryan O'Donnell via YouTube
Course Description
Overview
Explore the application of expander graphs in derandomization through this lecture from Carnegie Mellon University's graduate course "CS Theory Toolkit". Delve into how fully-explicit expander graphs can be utilized to decrease the error of randomized algorithms without significantly increasing the number of random bits used. Examine concepts such as error reduction, strongly explicit graphs, and algorithm analysis. Learn about random strings, set theory, and the magic trick of linear and exponential error decay in large expander graphs. Gain insights from resources like "Expander graphs and their applications" by Hoory, Linial, and Wigderson. Taught by Professor Ryan O'Donnell, this 23-minute lecture offers a comprehensive look at advanced topics in theoretical computer science.
Syllabus
Introduction
Error Reduction
Fully Explicit
Strongly Explicit
Algorithm A
Algorithm Analysis
Random Strings
Set B
Set L
Set S
Conclusion
Conclusions
Comparison
Magic trick
Linear error decay
Exponential error decay
Large Expander Graph
Taught by
Ryan O'Donnell
Related Courses
Algorithms, Part IIPrinceton University via Coursera Intro to Algorithms
Udacity Analysis of Algorithms
Princeton University via Coursera 算法设计与分析 Design and Analysis of Algorithms
Peking University via Coursera Design and Analysis of Algorithms
Chennai Mathematical Institute via Swayam