Evaluating Fairness of Machine Learning Models Under Uncertain and Incomplete Information
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore a 20-minute conference talk from the FAccT 2021 virtual event that delves into the challenges of evaluating fairness in machine learning models when faced with uncertain and incomplete information. Learn how researchers P. Awasthi, A. Beutel, M. Kleindessner, J. Morgenstern, and X. Wang address this critical issue in the field of AI ethics and fairness. Gain insights into novel approaches for assessing model fairness under constrained data scenarios and understand the implications for developing more equitable AI systems.
Syllabus
Evaluating Fairness of Machine Learning Models Under Uncertain and Incomplete Information
Taught by
ACM FAccT Conference
Related Courses
Artificial Intelligence Ethics in ActionLearnQuest via Coursera Human Factors in AI
Duke University via Coursera Identify principles and practices for responsible AI
Microsoft via Microsoft Learn Debiasing AI Using Amazon SageMaker
LinkedIn Learning Tech On the Go: Ethics in AI
LinkedIn Learning