YoVDO

Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design

Offered By: Valence Labs via YouTube

Tags

Computational Chemistry Courses Machine Learning Courses Drug Discovery Courses Diffusion Models Courses Equivariant Neural Networks Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore an in-depth lecture on equivariant 3D-conditional diffusion models for molecular linker design. Delve into the innovative DiffLinker approach, which addresses challenges in fragment-based drug discovery by designing linkers between disconnected molecular fragments. Learn about the model's E(3)-equivariant architecture, its ability to connect multiple fragments, and its automatic determination of atom numbers and attachment points. Examine the forward diffusion process, denoising techniques, and the implementation of equivariant graph neural networks. Discover how DiffLinker outperforms existing methods in generating diverse and synthetically-accessible molecules, and see its practical applications in real-world scenarios, including target protein pocket conditioning. Gain insights into the model's performance, limitations, and potential impact on drug discovery through a comprehensive presentation and Q&A session.

Syllabus

- Intro
- Examples of Structure-Based Drug Design
- Problem Setup
- Existing Methods for Linker Design
- Diffusion Models
- Forward Diffusion Process
- Denoising Process
- Equivariance and 3D Conditioning
- Equivariant Graph Neural Network
- DiffLinker - Predicting the # of Atoms in the Linker
- Results Overview
- Pocket Conditioning
- Performance & Conclusion
- Q+A


Taught by

Valence Labs

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent