Equilibrium Computation and Machine Learning
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore the intersection of machine learning and game theory in this Richard M. Karp Distinguished Lecture by MIT Professor Constantinos Daskalakis. Delve into the challenges of equilibrium computation in machine learning applications, including robustifying models against adversarial attacks, causal inference, training generative models, and learning in strategic environments. Examine why gradient descent-based optimization methods, successful in other areas of machine learning, often fail to find equilibria in game-theoretic scenarios. Gain insights into the obstacles and opportunities at the frontier of machine learning and game theory, and learn about the computational complexity of Nash equilibrium and multi-item auctions. Discover how this research impacts high-dimensional statistics and learning from biased, dependent, or strategic data.
Syllabus
Equilibrium Computation and Machine Learning
Taught by
Simons Institute
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent