YoVDO

Epistemic Values in Feature Importance Methods - Lessons From Feminist Epistemology

Offered By: Association for Computing Machinery (ACM) via YouTube

Tags

ACM FAccT Conference Courses Data Analysis Courses Critical Thinking Courses

Course Description

Overview

Explore a thought-provoking conference talk that delves into the intersection of feature importance methods in machine learning and feminist epistemology. Discover how epistemic values shape the development and interpretation of these methods, drawing valuable insights from feminist philosophy of science. Gain a deeper understanding of the underlying assumptions and biases in feature importance techniques, and learn how to critically evaluate their implications for fairness and accountability in AI systems. This 17-minute presentation, delivered at the ACM FAccT 2021 conference, challenges conventional approaches and offers fresh perspectives on improving the ethical and epistemological foundations of machine learning interpretability.

Syllabus

Epistemic Values in Feature Importance Methods: Lessons From Feminist Epistemology


Taught by

ACM FAccT Conference

Related Courses

Model Thinking
University of Michigan via Coursera
Fantasy and Science Fiction: The Human Mind, Our Modern World
University of Michigan via Coursera
Introduction to Mathematical Thinking
Stanford University via Coursera
Think Again: How to Reason and Argue
Duke University via Coursera
Introduction to Philosophy
University of Edinburgh via Coursera