YoVDO

On the Topological Expressiveness of Neural Networks

Offered By: Applied Algebraic Topology Network via YouTube

Tags

Neural Networks Courses Machine Learning Courses Function Approximation Courses Topological Data Analysis Courses

Course Description

Overview

Explore the topological constraints of neural network architectures in this hour-long lecture from the Applied Algebraic Topology Network. Delve into the classical understanding of neural networks as approximators of functions on compact sets, then examine recent breakthroughs by Johnson, Hanin, and Sellke that reveal how network architecture fundamentally limits representational capabilities. Learn about explicit topological obstructions to function representation in neural networks and gain insights into ongoing research developing a general theory of architectural constraints on topological expressiveness. Acquire a foundational understanding of neural networks and their topological properties, with potential applications in machine learning and data science.

Syllabus

Eli Grigsby (11/13/19): On the topological expressiveness of neural networks


Taught by

Applied Algebraic Topology Network

Related Courses

Topological Data Analysis - New Perspectives on Machine Learning - by Jesse Johnson
Open Data Science via YouTube
Analyzing Point Processes Using Topological Data Analysis
Applied Algebraic Topology Network via YouTube
MD Simulations and Machine Learning to Quantify Interfacial Hydrophobicity
Applied Algebraic Topology Network via YouTube
Topological Data Analysis of Plant-Pollinator Resource Complexes - Melinda Kleczynski
Applied Algebraic Topology Network via YouTube
Hubert Wagner - Topological Data Analysis in Non-Euclidean Spaces
Applied Algebraic Topology Network via YouTube