Eisenstein Cocycles and Values of L-Functions
Offered By: Fields Institute via YouTube
Course Description
Overview
Explore a 55-minute conference talk from the Fields Institute's "Theta Series: Representation Theory, Geometry, and Arithmetic" event, delivered by Luis Garcia from University College London. Delve into recent constructions of Eisenstein cocycles of arithmetic groups, examining their development through equivariant cohomology and differential forms. Discover how these objects function as theta kernels, connecting arithmetic group homology to algebraic structures. Investigate the application of these concepts to Sczech and Colmez's conjectures on critical values of Hecke L-functions. Follow the progression from introduction and explicit examples through modular symbols, abstract frameworks, and equivalent chromology to the exploration of symmetric spaces, differential forms, and fractional ideals.
Syllabus
Introduction
Explicit example
Modular symbols
Space of functions
Abstract framework
Equivalent chromology
elliptic chromology
canonical units
general theory
symmetric space
differential forms
psi
pq
System series
Fractional Ideal
Application
Taught by
Fields Institute
Related Courses
Advanced Precalculus: Geometry, Trigonometry and ExponentialsUniversity of Padova via FutureLearn Algebra: Elementary to Advanced
Johns Hopkins University via Coursera Aprendizaje de las matemáticas de primaria
Universidad de los Andes via Coursera 3D Geometry
Brilliant Contest Math II
Brilliant