YoVDO

Convolution in One Dimension for Neural Networks

Offered By: YouTube

Tags

Neural Networks Courses Deep Learning Courses Time Series Analysis Courses Data Preprocessing Courses Model Evaluation Courses Backpropagation Courses

Course Description

Overview

Dive into the fundamentals of one-dimensional convolution for neural networks in this comprehensive video series. Explore the sliding dot product concept, convolution equations, backpropagation techniques, and practical implementations. Learn how to handle padding, stride, and multi-channel, multi-kernel convolutions. Progress through hands-on Python implementations, comparing custom solutions with NumPy functions. Culminate the learning experience by building a complete 1D convolutional neural network, covering everything from data set creation to model evaluation and performance reporting.

Syllabus

1D convolution for neural networks, part 1: Sliding dot product.
1D convolution for neural networks, part 2: Convolution copies the kernel.
1D convolution for neural networks, part 3: Sliding dot product equations longhand.
1D convolution for neural networks, part 4: Convolution equation.
1D convolution for neural networks, part 5: Backpropagation.
1D convolution for neural networks, part 6: Input gradient.
1D convolution for neural networks, part 7: Weight gradient.
1D convolution for neural networks, part 8: Padding.
1D convolution for neural networks, part 9: Stride.
Implement 1D convolution, part 1: Convolution in Python from scratch.
Implement 1D convolution, part 2: Comparison with NumPy convolution().
Implement 1D convolution, part 3: Create the convolution block.
Implement 1D convolution, part 4: Initialize the convolution block.
Implement 1D convolution, part 5: Forward and backward pass.
Implement 1D convolution, part 6: Multi-channel, multi-kernel convolutions.
Implement 1D convolution, part 7: Weight gradient and input gradient.
Build a 1D convolutional neural network, part 1: Create a test data set.
Build a 1D convolutional neural network , part 2: Collect the Cottonwood blocks.
Build a 1D convolutional neural network , part 3: Connect the blocks into a network structure.
Build a 1D convolutional neural network, part 4: Training, evaluation, reporting.
Build a 1D convolutional neural network, part 5: One Hot, Flatten, and Logging blocks.
Build a 1D convolutional neural network, part 6: Text summary and loss history.
Build a 1D convolutional neural network, part 7: Evaluate the model.


Taught by

Brandon Rohrer

Related Courses

Post Graduate Certificate in Advanced Machine Learning & AI
Indian Institute of Technology Roorkee via Coursera
Advanced AI Techniques for the Supply Chain
LearnQuest via Coursera
Advanced Learning Algorithms
DeepLearning.AI via Coursera
IBM AI Engineering
IBM via Coursera
الذكاء الاصطناعي للجميع
DeepLearning.AI via Coursera