Dynamical Systems
Offered By: Steve Brunton via YouTube
Course Description
Overview
Syllabus
Sparse Identification of Nonlinear Dynamics (SINDy).
Koopman Observable Subspaces & Finite Linear Representations of Nonlinear Dynamics for Control.
Koopman Observable Subspaces & Nonlinearization.
Koopman Operator Optimal Control.
Compressed Sensing and Dynamic Mode Decomposition.
Hankel Alternative View of Koopman (HAVOK) Analysis [FULL].
Hankel Alternative View of Koopman (HAVOK) Analysis [SHORT].
Magnetic field reversal and Measles outbreaks: HAVOK models of chaos.
Linear model for chaotic Lorenz system [HAVOK].
Simulating the Lorenz System in Matlab.
Discrete-Time Dynamical Systems.
Simulating the Logistic Map in Matlab.
The Anatomy of a Dynamical System.
Deep Learning of Dynamics and Coordinates with SINDy Autoencoders.
Deep Learning of Dynamics and Coordinates with SINDy Autoencoders.
Deep Learning of Dynamics and Coordinates with SINDy Autoencoders.
Finite-Horizon, Energy-Optimal Trajectories in Unsteady Flows.
SINDy-PI: A robust algorithm for parallel implicit sparse identification of nonlinear dynamics.
Deep Delay Autoencoders Discover Dynamical Systems w Latent Variables: Deep Learning meets Dynamics!.
Taught by
Steve Brunton
Related Courses
Introduction to LogicStanford University via Coursera Networked Life
University of Pennsylvania via Coursera Introduction to Mathematical Thinking
Stanford University via Coursera Computational Photography
Georgia Institute of Technology via Coursera Initiation à la théorie des distributions
École Polytechnique via Coursera